
10 M-File Programming

10-2

MATLAB Programming: A Quick Start
Files that contain MATLAB language code are called M-files. M-files can be
functions that accept arguments and produce output, or they can be scripts that
execute a series of MATLAB statements. For MATLAB to recognize a file as an
M-file, its name must end in .m.

You create M-files using a text editor, then use them as you would any other
MATLAB function or command. The process looks like this:

function c = myfile(a,b)
c = sqrt((a.^2)+(b.^2))

1

 a = 7.5
 b = 3.342
 c = myfile(a,b)

c =

 8.2109

Create an M-file using a text
editor.

Call the M-file from the
command line, or from within
another M-file.

2

MATLAB Programming: A Quick Start

10-3

Kinds of M-Files
There are two kinds of M-files.

What’s in an M-File?
This section shows you the basic parts of a function M-file, so you can
familiarize yourself with MATLAB programming and get started with some
examples.

function f = fact(n)
% FACT Factorial.
% FACT(N) returns the factorial of N, usually denoted by N!.
% Put simply, FACT(N) is PROD(1:N).

f = prod(1:n);

This function has some elements that are common to all MATLAB functions:

• A function definition line. This line defines the function name, and the
number and order of input and output arguments.

• A H1 line. H1 stands for “help 1” line. MATLAB displays the H1 line for a
function when you use lookfor or request help on an entire directory.

• Help text. MATLAB displays the help text entry together with the H1 line
when you request help on a specific function.

• The function body. This part of the function contains code that performs the
actual computations and assigns values to any output arguments.

Script M-Files Function M-Files

• Do not accept input arguments or
return output arguments

• Can accept input arguments and
return output arguments

• Operate on data in the workspace • Internal variables are local to the
function by default

• Useful for automating a series of
steps you need to perform many
times

• Useful for extending the
MATLAB language for your
application

Function definition line

Function body

Help text

H1 (help 1) line

10 M-File Programming

10-4

The “Functions” section coming up provides more detail on each of these parts
of a MATLAB function.

Creating M-Files: Accessing Text Editors
M-files are ordinary text files that you create using a text editor. MATLAB
provides a built in editor, although you can use any text editor you like.

Another way to edit an M-file is from the MATLAB command line using the
edit command. For example,

edit poof

opens the editor on the file poof.m. Omitting a filename opens the editor on an
untitled file.

You can create the fact function shown on the previous page by opening your
text editor, entering the lines shown, and saving the text in a file called fact.m
in your current directory.

Once you’ve created this file, here are some things you can do:

• List the names of the files in your current directory
what

• List the contents of M-file fact.m
type fact

• Call the fact function
fact(5)
ans =

 120

Note To open the editor on the PC, from the File menu
choose New and then M-File.

Scripts

10-5

Scripts
Scripts are the simplest kind of M-file – they have no input or output
arguments. They’re useful for automating series of MATLAB commands, such
as computations that you have to perform repeatedly from the command line.
Scripts operate on existing data in the workspace, or they can create new data
on which to operate. Any variables that scripts create remain in the workspace
after the script finishes so you can use them for further computations.

Simple Script Example
These statements calculate rho for several trigonometric functions of theta,
then create a series of polar plots.

% An M–file script to produce "flower petal" plots
theta = –pi:0.01:pi;
rho(1,:) = 2*sin(5*theta).^2;
rho(2,:) = cos(10*theta).^3;
rho(3,:) = sin(theta).^2;
rho(4,:) = 5*cos(3.5*theta).^3;
for i = 1:4
 polar(theta,rho(i,:))
 pause
end

Try entering these commands in an M-file called petals.m. This file is now a
MATLAB script. Typing petals at the MATLAB command line executes the
statements in the script.

After the script displays a plot, press Return to move to the next plot. There
are no input or output arguments; petals creates the variables it needs in the
MATLAB workspace. When execution completes, the variables (i, theta, and
rho) remain in the workspace. To see a listing of them, enter whos at the
command prompt.

Comment line

Computations

Graphical output
commands

10 M-File Programming

10-6

Functions
Functions are M-files that accept input arguments and return output
arguments. They operate on variables within their own workspace. This is
separate from the workspace you access at the MATLAB command prompt.

Simple Function Example
The average function is a simple M-file that calculates the average of the
elements in a vector.

function y = average(x)
% AVERAGE Mean of vector elements.
% AVERAGE(X), where X is a vector, is the mean of vector elements.
% Non-vector input results in an error.
[m,n] = size(x);
if (~((m == 1) | (n == 1)) | (m == 1 & n == 1))
 error(’Input must be a vector’)
end
y = sum(x)/length(x); % Actual computation

If you would like, try entering these commands in an M-file called average.m.
The average function accepts a single input argument and returns a single
output argument. To call the average function, enter:

z = 1:99;

average(z)

ans =
 50

Basic Parts of a Function M-File
A function M-file consists of:

• A function definition line

• A H1 line

• Help text

• The function body

• Comments

Functions

10-7

Function Definition Line
The function definition line informs MATLAB that the M-file contains a
function, and specifies the argument calling sequence of the function. The
function definition line for the average function is:

All MATLAB functions have a function definition line that follows this pattern.

If the function has multiple output values, enclose the output argument list in
square brackets. Input arguments, if present, are enclosed in parentheses. Use
commas to separate multiple input or output arguments. Here’s a more
complicated example.

function [x,y,z] = sphere(theta,phi,rho)

If there is no output, leave the output blank

function printresults(x)

or use empty square brackets

function [] = printresults(x)

The variables that you pass to the function do not need to have the same name
as those in the function definition line.

H1 Line
The H1 line, so named because it is the first help text line, is a comment line
immediately following the function definition line. Because it consists of
comment text, the H1 line begins with a percent sign, “%.” For the average
function, the H1 line is:

% AVERAGE Mean of vector elements.

This is the first line of text that appears when a user types help function_name
at the MATLAB prompt. Further, the lookfor command searches on and
displays only the H1 line. Because this line provides important summary

function y = average(x)

input argument
function name
output argument

keyword

10 M-File Programming

10-8

information about the M-file, it is important to make it as descriptive as
possible.

Help Text
You can create online help for your M-files by entering text on one or more
comment lines, beginning with the line immediately following the H1 line. The
help text for the average function is:

% AVERAGE(X), where X is a vector, is the mean of vector elements.
% Nonvector input results in an error.

When you type help function_name, MATLAB displays the comment lines
that appear between the function definition line and the first non-comment
(executable or blank) line. The help system ignores any comment lines that
appear after this help block.

For example, typing help sin results in

SIN Sine.
 SIN(X) is the sine of the elements of X.

Function Body
The function body contains all the MATLAB code that performs computations
and assigns values to output arguments. The statements in the function body
can consist of function calls, programming constructs like flow control and
interactive input/output, calculations, assignments, comments, and blank
lines.

For example, the body of the average function contains a number of simple
programming statements.

[m,n] = size(x);
if (~((m == 1) | (n == 1)) | (m == 1 & n == 1))
 error(’Input must be a vector’)
end
y = sum(x)/length(x);

Flow control
Error message display

Computation and assignment

Functions

10-9

Comments
As mentioned earlier, comment lines begin with a percent sign (%). Comment
lines can appear anywhere in an M-file, and you can append comments to the
end of a line of code. For example,

% Add up all the vector elements.
y = sum(x) % Use the sum function.

The first comment line immediately following the function definition line is
considered the H1 line for the function. The H1 line and any comment lines
immediately following it constitute the online help entry for the file.

In addition to comment lines, you can insert blank lines anywhere in an M-file.
Blank lines are ignored. However, a blank line can indicate the end of the help
text entry for an M-file.

Help for Directories
You can make help entries for an entire directory by creating a file with the
special name Contents.m that resides in the directory. This file must contain
only comment lines; that is, every line must begin with a percent sign.
MATLAB displays the lines in a Contents.m file whenever you type

help directory_name

If a directory does not contain a Contents.m file, typing help directory_name
displays the first help line (the H1 line) for each M-file in the directory.

Function Names
MATLAB function names have the same constraints as variable names.
MATLAB uses the first 31 characters of names. Function names must begin
with a letter; the remaining characters can be any combination of letters,
numbers, and underscores. Some operating systems may restrict function
names to shorter lengths.

The name of the text file that contains a MATLAB function consists of the
function name with the extension .m appended. For example,

average.m

If the filename and the function definition line name are different, the internal
name is ignored.

10 M-File Programming

10-10

Thus, while the function name specified on the function definition line does not
have to be the same as the filename, we strongly recommend that you use the
same name for both.

How Functions Work
You can call function M-files from either the MATLAB command line or from
within other M-files. Be sure to include all necessary arguments, enclosing
input arguments in parentheses and output arguments in square brackets.

Function Name Resolution
When MATLAB comes upon a new name, it resolves it into a specific function
by following these steps:

1 Checks to see if the name is a variable.

2 Checks to see if the name is a subfunction, a MATLAB function that resides
in the same M-file as the calling function. Subfunctions are discussed on
page 10-38.

3 Checks to see if the name is a private function, a MATLAB function that
resides in a private directory, a directory accessible only to M-files in the
directory immediately above it. Private directories are discussed on page
10-39.

4 Checks to see if the name is a function on the MATLAB search path.
MATLAB uses the first file it encounters with the specified name.

If you duplicate function names, MATLAB executes the one found first using
the above rules. It is also possible to overload function names. This uses
additional dispatching rules and is discussed in Chapter 14, “Classes and
Objects.”

What Happens When You Call a Function
When you call a function M-file from either the command line or from within
another M-file, MATLAB parses the function into pseudocode and stores it in
memory. This prevents MATLAB from having to reparse a function each time
you call it during a session. The pseudocode remains in memory until you clear

Functions

10-11

it using the clear command, or until you quit MATLAB. Variants of the clear
command that you can use to clear functions from memory include:

Creating P-Code Files
You can save a preparsed version of a function or script, called P-code files, for
later MATLAB sessions using the pcode command. For example,

pcode average

parses average.m and saves the resulting pseudocode to the file named
average.p. This saves MATLAB from reparsing average.m the first time you
call it in each session.

MATLAB is very fast at parsing so the pcode command rarely makes much of
a speed difference.

One situation where pcode does provide a speed benefit is for large GUI
applications. In this case, many M-files must be parsed before the application
becomes visible.

Another situation for pcode is when, for proprietary reasons, you want to hide
algorithms you’ve created in your M-file.

How MATLAB Passes Function Arguments
From the programmer’s perspective, MATLAB appears to pass all function
arguments by value. Actually, however, MATLAB passes by value only those
arguments that a function modifies. If a function does not alter an argument
but simply uses it in a computation, MATLAB passes the argument by
reference to optimize memory use.

Function Workspaces
Each M-file function has an area of memory, separate from MATLAB’s base
workspace, in which it operates. This area is called the function workspace,
with each function having its own workspace context.

clear function_name Remove specified function from workspace.

clear functions Remove all compiled M-functions.

clear all Remove all variables and functions

10 M-File Programming

10-12

While using MATLAB, the only variables you can access are those in the calling
context, be it the base workspace or that of another function. The variables that
you pass to a function must be in the calling context, and the function returns
its output arguments to the calling workspace context. You can however, define
variables as global variables explicitly, allowing more than one workspace
context to access them.

Checking the Number of Function Arguments
The nargin and nargout functions let you determine how many input and
output arguments a function is called with. You can then use conditional
statements to perform different tasks depending on the number of arguments.
For example,

function c = testarg1(a,b)
if (nargin == 1)
 c = a.^2;
elseif (nargin == 2)
 c = a + b;
end

Given a single input argument, this function squares the input value. Given
two inputs, it adds them together.

Here’s a more advanced example that finds the first token in a character string.
A token is a set of characters delimited by whitespace or some other character.
Given one input, the function assumes a default delimiter of whitespace; given
two, it lets you specify another delimiter if desired. It also allows for two
possible output argument lists.

Functions

10-13

function [token,remainder] = strtok(string,delimiters)
if nargin < 1, error(’Not enough input arguments.’); end
token = []; remainder = [];
len = length(string);
if len == 0
 return
end
if (nargin == 1)
 delimiters = [9:13 32]; % White space characters
end
i = 1;
while (any(string(i) == delimiters))
 i = i + 1;
 if (i > len), return, end
end

start = i;
while (~any(string(i) == delimiters))
 i = i + 1;
 if (i > len), break, end
end
finish = i – 1;

token = string(start:finish);
if (nargout == 2)
 remainder = string(finish + 1:end);
end

Note strtok is a MATLAB M-file in the strfun directory.

Note that the order in which output arguments appear in the function
declaration line is important. The argument that the function returns in most
cases appears first in the list. Additional, optional arguments are appended to
the list.

Function requires at least
one input.

If one input, use white
space delimiter.

Determine where non-
delimiter characters
begin.

Find where token ends.

For two output arguments,
count characters after first
delimiter (remainder).

10 M-File Programming

10-14

Passing Variable Numbers of Arguments
The varargin and varargout functions let you pass any number of inputs or
return any number of outputs to a function. MATLAB packs all of the specified
input or output into a cell array, a special kind of MATLAB array that consists
of cells instead of array elements. Each cell can hold any size or kind of data –
one might hold a vector of numeric data, another in the same array might hold
an array of string data, and so on.

Here’s an example function that accepts any number of two-element vectors
and draws a line to connect them.

function testvar(varargin)
for i = 1:length(varargin)
 x(i) = varargin{i}(1);
 y(i) = varargin{i}(2);
end
xmin = min(0,min(x));
ymin = min(0,min(y));
axis([xmin fix(max(x))+3 ymin fix(max(y))+3])
plot(x,y)

Coded this way, the testvar function works with various input lists; for
example,

testvar([2 3],[1 5],[4 8],[6 5],[4 2],[2 3])
testvar([–1 0],[3 –5],[4 2],[1 1])

Unpacking varargin Contents
Because varargin contains all the input arguments in a cell array, it’s
necessary to use cell array indexing to extract the data. For example,

y(i) = varargin{i}(2);

Cell array indexing has two subscript components:

• The cell indexing expression, in curly braces

• The contents indexing expression(s), in parentheses

In the code above, the indexing expression {i} accesses the i’th cell of
varargin. The expression (2) represents the second element of the cell
contents.

Cell array indexing

Functions

10-15

Packing varargout Contents
When allowing any number of output arguments, you must pack all of the
output into the varargout cell array. Use nargout to determine how many
output arguments the function is called with. For example, this code accepts a
two-column input array, where the first column represents a set of x
coordinates and the second represents y coordinates. It breaks the array into
separate [xi yi] vectors that you can pass into the testvar function on the
previous page.

function [varargout] = testvar2(arrayin)
for i = 1:nargout
 varargout{i} = arrayin(i,:)
end

The assignment statement inside the for loop uses cell array assignment
syntax. The left side of the statement, the cell array, is indexed using curly
braces to indicate that the data goes inside a cell. For complete information on
cell array assignment, see “Structures and Cell Arrays” in Chapter 13.

Here’s how to call testvar2.

a = {1 2;3 4;5 6;7 8;9 0};
[p1,p2,p3,p4,p5] = testvar2(a);

varargin and varargout in Argument Lists
varargin or varargout must appear last in the argument list, following any
required input or output variables. That is, the function call must specify the
required arguments first. For example, these function declaration lines show
the correct placement of varargin and varargout.

function [out1,out2] = example1(a,b,varargin)
function [i,j,varargout] = example2(x1,y1,x2,y2,flag)

Cell array assignment

10 M-File Programming

10-16

Local and Global Variables
The same guidelines that apply to MATLAB variables at the command line also
apply to variables in M-files:

• You do not need to type or declare variables. Before assigning one variable to
another, however, you must be sure that the variable on the right-hand side
of the assignment has a value.

• Any operation that assigns a value to a variable creates the variable if
needed, or overwrites its current value if it already exists.

• MATLAB variable names consist of a letter followed by any number of
letters, digits, and underscores. MATLAB distinguishes between uppercase
and lowercase characters, so A and a are not the same variable.

• MATLAB uses only the first 31 characters of variable names.

Ordinarily, each MATLAB function, defined by an M-file, has its own local
variables, which are separate from those of other functions, and from those of
the base workspace. However, if several functions, and possibly the base
workspace, all declare a particular name as global, then they all share a single
copy of that variable. Any assignment to that variable, in any function, is
available to all the other functions declaring it global.

Suppose you want to study the effect of the interaction coefficients, α and β, in
the Lotka-Volterra predator-prey model

Create an M-file, lotka.m.

function yp = lotka(t,y)
%LOTKA Lotka-Volterra predator-prey model.
global ALPHA BETA
yp = [y(1) – ALPHA*y(1)*y(2); –y(2) + BETA*y(1)*y(2)];

y·1 y1 αy1y2–=

y·2 y2– βy1y2+=

Local and Global Variables

10-17

Then interactively enter the statements

global ALPHA BETA
ALPHA = 0.01
BETA = 0.02
[t,y] = ode23(’lotka’,0,10,[1; 1]);
plot(t,y)

The two global statements make the values assigned to ALPHA and BETA at the
command prompt available inside the function defined by lotka.m. They can
be modified interactively and new solutions obtained without editing any files.

For your MATLAB application to work with global variables:

• Declare the variable as global in every function that requires access to it. To
enable the workspace to access the global variable, also declare it as global
from the command line.

• In each function, issue the global command before the first occurrence of the
variable name. The top of the M-file is recommended.

MATLAB global variable names are typically longer and more descriptive than
local variable names, and sometimes consist of all uppercase characters. These
are not requirements, but guidelines to increase the readability of MATLAB
code and reduce the chance of accidentally redefining a global variable.

Persistent Variables
A variable may be defined as persistent so that it does not change value from
one call to another. Persistent variables may be used within a function only.
Persistent variables remain in memory until the M-file is cleared or changed.

persistent is exactly like global, except that the variable name is not in the
global workspace, and the value is reset if the M-file is changed or cleared.

Three MATLAB functions support the use of persistent variables.

mlock Prevents an M-file from being cleared.

munlock Unlocks an M-file that had previously been locked by mlock.

mislocked Indicates whether an M-file can be cleared or not.

10 M-File Programming

10-18

Special Values
Several functions return important special values that you can use in your
M-files.

All of these special functions and constants reside in MATLAB’s elmat
directory, and provide online help. Here are several examples that use them in
MATLAB expressions.

x = 2*pi;
A = [3+2i 7–8i];
tol = 3*eps;

ans Most recent answer (variable). If you do not assign an output
variable to an expression, MATLAB automatically stores the
result in ans.

eps Floating-point relative accuracy. This is the tolerance MATLAB
uses in its calculations.

realmax Largest floating-point number your computer can represent.

realmin Smallest floating-point number your computer can represent.

pi 3.1415926535897...

i, j Imaginary unit.

inf Infinity. Calculations like n/0, where n is any nonzero real value,
result in inf.

NaN Not-a-Number, an invalid numeric value. Expressions like 0/0
and inf/inf result in a NaN, as do arithmetic operations
involving a NaN. n/0, where n is complex, also returns NaN.

computer Computer type.

flops Count of floating-point operations.

version MATLAB version string.

Data Types

10-19

Data Types
There are six fundamental data types (classes) in MATLAB, each one a
multidimensional array. The six classes are double, char, sparse, storage,
cell, and struct. The two-dimensional versions of these arrays are called
matrices and are where MATLAB gets its name.

You will probably spend most of your time working with only two of these data
types: the double precision matrix (double) and the character array (char) or
string. This is because all computations are done in double-precision and most
of the functions in MATLAB work with arrays of double-precision numbers or
strings.

The other data types are for specialized situations like image processing
(unit8), sparse matrices (sparse), and large scale programming (cell and
struct).

You can’t create variables with the types numeric, array, or storage. These
virtual types serve only to group together types that share some common
attributes.

The storage data types are for memory efficient storage only. You can apply
basic operations such as subscripting and reshaping to these types of arrays
but you can’t perform any math with them. You must convert such arrays to
double via the double function before doing any math operations.

You can define user classes and objects in MATLAB that are based on the
struct data type. For more information about creating classes and objects, see
“Classes and Objects: An Overview” in Chapter 14.

array

char numeric cell struct

double

sparse

storage

(int8, uint8,int16,
uint16, int32, uint32)

user object

10 M-File Programming

10-20

This table describes the data types in more detail.

Class Example Description

array virtual data type

cell {17 ’hello’ eye(2)} Cell array. Elements of cell arrays contain other
arrays. Cell arrays collect related data and
information of a dissimilar size together.

char ’Hello’ Character array (each character is 16 bits long).
Also referred to as a string.

double [1 2;3 4]
5+6i

Double precision numeric array (this is the most
common MATLAB variable type).

numeric virtual data type

sparse speye(5) Sparse double precision matrix (2-D only). The
sparse matrix stores matrices with only a few
nonzero elements in a fraction of the space required
for an equivalent full matrix. Sparse matrices
invoke special methods especially tailored to solve
sparse problems.

storage virtual data type

struct a.day = 12;
a.color = ’Red’;
a.mat = magic(3);

Structure array. Structure arrays have field names.
The fields contain other arrays. Like cell arrays,
structures collect related data and information
together.

uint8 uint8(magic(3)) Unsigned 8 bit integer array. The unit8 array
stores integers in the range from 0 to 255 in 1/8 the
memory required for a double precision array. No
mathematical operations are defined for uint8
arrays.

user object inline(’sin(x)’) User-defined data type.

