MATLAB Exercises

1. Use MATLAB to compute the resulting coefficients of the product of two polynomials:

$$
y=\left(3 x^{6}+2 x^{4}+\sqrt{2} x^{3}+x-9\right)\left(x^{10}-\sqrt{3} x^{5}+x\right)
$$

You should be able to compute the result by using only one command.
2. Use MATLAB to compute the binomial coefficients which are the coefficients of $(x+y)^{n}$. (Hint: read about the MATLAB function poly)
3. Decompose a given vector $x(n)$ into its odd-indexed and even-indexed components:

$$
\begin{aligned}
& x_{\text {odd }}(n)=x(2 n+1) \\
& x_{\text {even }}(n)=x(2 n)
\end{aligned}
$$

4. Using only vector operations, compute the mean squared error between two complex vectors. The mean squared error between two complex signals $x(n)$ and $y(n)$ is given by:

$$
\operatorname{MSE}=\frac{1}{N} \sum_{n=1}^{N}\|x(n)-y(n)\|^{2}
$$

5. Create a 5×5 matrix T such that:

$$
[T]_{k, l}=k-l
$$

Compute eigenvalues and eigenvectors of this matrix
6. Write a script to up-sample a given vector by a factor of N :

Example: $x=\left[\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right]$ converts to $y=\left[\begin{array}{llllllllllll}1 & 0 & 0 & 2 & 0 & 0 & 3 & 0 & 0 & 4 & 0 & 0\end{array}\right]$ for $N=3$
7. Write a script to down-sample a given vector by a factor of N :

Example: $x=\left[\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array} 10\right.$ converts to $y=\left[\begin{array}{llll}1 & 3 & 5 & 7\end{array}\right]$ for $N=2$
8. Generate a length 1000 Gaussian distributed vector with a mean of 10 and variance of 9.
9. Generate a length 1000 uniformly distributed vector with a zero mean and variance of 10.
10. Using MATLAB, determine the impulse response of the following system (The system is initially at rest).

$$
y(n)=x(n)-2 \cos (\pi / 8) y(n-1)+y(n-2)
$$

