
Expressions

11

Expressions
Like most other programming languages, MATLAB provides mathematical
expressions, but unlike most programming languages, these expressions
involve entire matrices. The building blocks of expressions are

• Variables

• Numbers

• Operators

• Functions

Variables
MATLAB does not require any type declarations or dimension statements.
When MATLAB encounters a new variable name, it automatically creates the
variable and allocates the appropriate amount of storage. If the variable
already exists, MATLAB changes its contents and, if necessary, allocates new
storage. For example

num_students = 25

creates a 1-by-1 matrix named num_students and stores the value 25 in its
single element.

Variable names consist of a letter, followed by any number of letters, digits, or
underscores. MATLAB uses only the first 31 characters of a variable name.
MATLAB is case sensitive; it distinguishes between uppercase and lowercase
letters. A and a are not the same variable. To view the matrix assigned to any
variable, simply enter the variable name.

Numbers
MATLAB uses conventional decimal notation, with an optional decimal point
and leading plus or minus sign, for numbers. Scientific notation uses the letter
e to specify a power-of-ten scale factor. Imaginary numbers use either i or j as
a suffix. Some examples of legal numbers are

3              –99            0.0001
9.6397238      1.60210e–20    6.02252e23
1i             –3.14159j      3e5i



 Getting Started

12

All numbers are stored internally using the long format specified by the IEEE
floating-point standard. Floating-point numbers have a finite precision of
roughly 16 significant decimal digits and a finite range of roughly 10-308 to
10+308. (The VAX computer uses a different floating-point format, but its
precision and range are nearly the same.)

Operators 
Expressions use familiar arithmetic operators and precedence rules.

Functions
MATLAB provides a large number of standard elementary mathematical
functions, including abs, sqrt, exp, and sin. Taking the square root or
logarithm of a negative number is not an error; the appropriate complex result
is produced automatically. MATLAB also provides many more advanced
mathematical functions, including Bessel and gamma functions. Most of these
functions accept complex arguments. For a list of the elementary mathematical
functions, type

help elfun

+ Addition

– Subtraction

* Multiplication

/ Division

\ Left division
(described in the section on Matrices and Linear
Algebra in Using MATLAB)

^ Power

' Complex conjugate transpose

( ) Specify evaluation order



Expressions

13

For a list of more advanced mathematical and matrix functions, type

help specfun
help elmat

Some of the functions, like sqrt and sin, are built-in. They are part of the
MATLAB core so they are very efficient, but the computational details are not
readily accessible. Other functions, like gamma and sinh, are implemented in
M-files. You can see the code and even modify it if you want.

Several special functions provide values of useful constants.

Infinity is generated by dividing a nonzero value by zero, or by evaluating well
defined mathematical expressions that overflow, i.e., exceed realmax.
Not-a-number is generated by trying to evaluate expressions like 0/0 or
Inf–Inf that do not have well defined mathematical values.

The function names are not reserved. It is possible to overwrite any of them
with a new variable, such as

eps = 1.e–6

and then use that value in subsequent calculations. The original function can
be restored with

clear eps

pi 3.14159265…

i Imaginary unit, √-1

j Same as i

eps Floating-point relative precision, 2-52

realmin Smallest floating-point number, 2-1022

realmax Largest floating-point number, (2-ε)21023

Inf Infinity

NaN Not-a-number



 Getting Started

14

Expressions
You have already seen several examples of MATLAB expressions. Here are a
few more examples, and the resulting values.

rho = (1+sqrt(5))/2
rho =
    1.6180

a = abs(3+4i)
a =
     5

z = sqrt(besselk(4/3,rho–i))
z =
   0.3730+ 0.3214i

huge = exp(log(realmax))
huge =
  1.7977e+308

toobig = pi*huge
toobig =
   Inf



Working with Matrices

15

Working with Matrices
This section introduces you to other ways of creating matrices.

Generating Matrices
MATLAB provides four functions that generate basic matrices:

Some examples:

Z = zeros(2,4)
Z =
     0     0     0     0
     0     0     0     0

F = 5*ones(3,3)
F =
     5     5     5
     5     5     5
     5     5     5

N = fix(10*rand(1,10))
N =
     4     9     4     4     8     5     2     6     8     0

R = randn(4,4)
R =
    1.0668    0.2944   –0.6918   –1.4410
    0.0593   –1.3362    0.8580    0.5711
   –0.0956    0.7143    1.2540   –0.3999
   –0.8323    1.6236   –1.5937    0.6900

zeros All zeros

ones All ones

rand Uniformly distributed random elements

randn Normally distributed random elements



 Getting Started

16

load
The load command reads binary files containing matrices generated by earlier
MATLAB sessions, or reads text files containing numeric data. The text file
should be organized as a rectangular table of numbers, separated by blanks,
with one row per line, and an equal number of elements in each row. For
example, outside of MATLAB, create a text file containing these four lines:

    16.0     3.0     2.0    13.0
     5.0    10.0    11.0     8.0
     9.0     6.0     7.0    12.0
     4.0    15.0    14.0     1.0

Store the file under the name magik.dat. Then the command

load magik.dat

reads the file and creates a variable, magik, containing our example matrix.

M-Files
You can create your own matrices using M-files, which are text files containing
MATLAB code. Just create a file containing the same statements you would
type at the MATLAB command line. Save the file under a name that ends in .m.

NOTE  To access a text editor on a PC, choose Open or New from the File
menu or press the appropriate button on the toolbar. To access a text editor
under UNIX, use the ! symbol followed by whatever command you would
ordinarily use at your operating system prompt.

For example, create a file containing these five lines:

    A = [ ...
    16.0     3.0     2.0    13.0
     5.0    10.0    11.0     8.0
     9.0     6.0     7.0    12.0
     4.0    15.0    14.0     1.0 ];



Working with Matrices

17

Store the file under the name magik.m. Then the statement

magik

reads the file and creates a variable, A, containing our example matrix.

Concatenation
Concatenation is the process of joining small matrices to make bigger ones. In
fact, you made your first matrix by concatenating its individual elements. The
pair of square brackets, [], is the concatenation operator. For an example, start
with the 4-by-4 magic square, A, and form

B = [A  A+32; A+48  A+16]

The result is an 8-by-8 matrix, obtained by joining the four submatrices.

B =

    16     3     2    13    48    35    34    45
     5    10    11     8    37    42    43    40
     9     6     7    12    41    38    39    44
     4    15    14     1    36    47    46    33
    64    51    50    61    32    19    18    29
    53    58    59    56    21    26    27    24
    57    54    55    60    25    22    23    28
    52    63    62    49    20    31    30    17

This matrix is half way to being another magic square. Its elements are a
rearrangement of the integers 1:64. Its column sums are the correct value for
an 8-by-8 magic square.

sum(B)

ans =
   260   260   260   260   260   260   260   260

But its row sums, sum(B')', are not all the same. Further manipulation is
necessary to make this a valid 8-by-8 magic square.



 Getting Started

18

Deleting Rows and Columns
You can delete rows and columns from a matrix using just a pair of square
brackets. Start with

X = A;

Then, to delete the second column of X, use

X(:,2) = []

This changes X to

X =
    16     2    13
     5    11     8 
     9     7    12
     4    14     1

If you delete a single element from a matrix, the result isn’t a matrix anymore.
So, expressions like

X(1,2) = []

result in an error. However, using a single subscript deletes a single element,
or sequence of elements, and reshapes the remaining elements into a row
vector. So

X(2:2:10) = []

results in

X =
    16     9     2     7    13    12     1


